Abstract

We present the theoretical and experimental study of nondiffracting Bessel beams as a device for optical manipulation and confinement of nanoparticles. We express analytically the optical forces acting on a nanoparticle placed into a single and two counter-propagating non-paraxial nondiffracting beams created behind the axicon. Nanoparticle behavior in these configurations is predicted by computer simulations. Finally we demonstrate experimentally how standing waves created from two independent counter-propagating nondiffraction beams confines polystyrene beads of radii 100 nm, and organizes them into a one-dimensional chain 1 mm long. Phase shift in one beam causes the motion of the whole structure of the standing wave together with any confined objects over its extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.