Abstract

Cerebral palsy (CP) is a perinatally acquired nonprogressive brain damage resulting in motor impairment affecting mobility and posture. Early identification of infants with CP is desired to target early interventions and follow-up. During early infancy, distinct motion patterns occur which are highly predictive for later disability. These motor patterns can be observed and recorded. In this paper, a method to predict later CP based on early video recordings of the infants' spontaneous movements, applying optical flow and statistical pattern recognition, is presented. We extract motion information from video recordings of young infants using a total variation related optical flow method. By using wavelet analysis features from motion trajectories of points initiated on a regular grid were extracted and classified using a support vector machine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.