Abstract

We implement a simple method for fast and precise delivery of ultracold atoms to a microscopic device, i.e. a Fabry–Perot microcavity. By moving a single beam optical dipole trap in a direction perpendicular to the beam axis with an acousto-optical deflector, we transport up to 1 million atoms within 100 ms over 1 cm. Under these conditions, a transport efficiency above 95% is achieved with only minimal heating. The atomic cloud is accurately positioned within the microcavity and transferred into an intra-cavity optical lattice. With the addition of a secondary guiding beam, we show how residual sloshing motion along the shallow axis of the trap can be minimized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call