Abstract

Spherical design and Davies-cotton design, which can supply a wide Field of View (FOV) and have a single optical element structure, are the two candidate optics for Wide FOV Cherenkov/Fluorescence Telescope Array (WFCTA). To obtain a good imaging quality, we have done a detailed study to acquire optimal configurations for these two optics. In this paper, first, a proper curvature radius for the reflector, an optimized location for the camera, as well as a tolerance for the distortion of images for two designs have been presented. Furthermore, using such optimal configurations, the features of Cherenkov images initiated by proton and iron showers both with two optics have been investigated. Based on these results, it can be concluded that spherical design has the prior optical properties, such as a wider FOV of 16°, a higher and more homogeneous resolution for all incident directions within the 16° FOV and a lower light loss in the spots, as well as more signals collected in an Cherenkov image, relatively shorter arrival time difference for lights in a shower and brighter PMTs in the central part of a shower track. Thus it will be chosen as WFCTA optics. Finally, the optical properties of the two designs with 10° FOV have also been investigated. It should be mentioned that with such a smaller FOV, Davies-cotton optics is an effective design for it has a great imaging quality comparing with the setup of 16° FOV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.