Abstract

AbstractIn CMOS, the addition of chlorine particularly in TCA form to the growth of thermal oxides in logic technologies is well-known and pervasive. In addition to the increasing environmental concerns of chlorine use, one of the important parameters is the amount of metallic contamination due to transition metals such as Fe in the Si, and alkali metals like Na in the oxide since these phenomena effect both device performance and quality. However, the ability to measure this parameter on product material is not generally available due to inherent problems with most known methods. In this paper we report on the application of high-injection, frequency based optical surface photovoltage (SPV) and a more recent technique known as a contact potential difference (CPD) to both quantify and qualify as-grown oxides on CZ P-type silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.