Abstract

AbstractIn this study, we focus on the recovery phase of a geomagnetic storm that happened on 6–11 September 2017. The ground‐based total electron content data, as well as the F region in situ electron density, measured by the Swarm satellites show an interesting feature, revealing at low and equatorial latitudes on the dayside ionosphere prominent positive and negative responses at the Asian and American longitudinal sectors, respectively. The global distribution of thermospheric O/N2 ratio measured by global ultraviolet imager on board the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics satellite cannot well explain such longitudinally opposite response of the ionosphere. Comparison between the equatorial electrojet variations from stations at Huancayo in Peru and Davao in the Philippines suggests that the longitudinally opposite ionospheric response should be closely associated with the interplay of E region electrodynamics. By further applying nonmigrating tidal analysis to the ground‐based total electron content data, we find that the diurnal tidal components, D0 and DW2, as well as the semidiurnal component SW1, are clearly enhanced over prestorm days and persist into the early recovery phase, indicating the possibility of lower atmospheric forcing contributing to the longitudinally opposite response of the ionosphere on 9–11 September 2017.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.