Abstract

China has attained rice sufficiency with the increased use of nitrogen (N) fertilizer, but this has led to serious N pollution. China has the world’s highest use of N with the lowest N use efficiency (NUE). Including livestock production, China’s agriculture sector has surpassed industry as the greatest polluter of water. Using plastic film on raised-beds, combined with improved agronomic practices, can boost rice yield by 50% with 36% less N fertilizer use, 30% higher NUE, and stabilized the yield of 9.75 t ha−1. It also counters the effects of drought and low ambient temperature. A six-year study was conducted combining no-tillage, crop-residue mulch, and plastic cover, alternating organic rice and rapeseed production. All the treatments, fertilized with biogas slurry and rapeseed meal, gave rice yields of 7.0 to 10.7 t ha−1, well above China’s average of 6.5 t ha−1. In this time, soil organic matter increased from 1.6% to 4.2%. In the first four years, the combination of crop-residue mulch with plastic cover had a slightly higher yield than mulch alone. In the fifth and sixth years, the latter treatment surpassed the use of plastic cover with crop-residue mulch. Trials with a biodegradable film show that plastic pollution can be dealt with.

Highlights

  • Over the past 50 years, China’s agricultural improvement efforts have sought to increase food production to meet the demand of a large and still growing population, with the objective of attaining grain self-sufficiency despite the country’s very limited arable land area, less than 0.1 hectare per capita [1,2]

  • The excessive use of N fertilizer in rice production combined with the mismanagement of livestock waste has led to severe N pollution problems in China

  • Using the innovative plastic cover integrated (PCIT) for rice production countervails the constraints of drought and low temperature to achieve high and stable rice yields with lower use of N fertilizer

Read more

Summary

Introduction

Over the past 50 years, China’s agricultural improvement efforts have sought to increase food production to meet the demand of a large and still growing population, with the objective of attaining grain self-sufficiency despite the country’s very limited arable land area, less than 0.1 hectare per capita [1,2]. This area has been shrinking, due to rapid industrialization and urbanization while the population continues growing.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.