Abstract

We generalize Lyapunov's convexity theorem for classical (scalar-valued) measures to quantum (operator-valued) measures. In particular, we show that the range of a nonatomic quantum probability measure is a weak⁎-closed convex set of quantum effects (positive operators bounded above by the identity operator) under a sufficient condition on the non-injectivity of integration. To prove the operator-valued version of Lyapunov's theorem, we must first define the notions of essentially bounded, essential support, and essential range for quantum random variables (Borel measurable functions from a set to the bounded linear operators acting on a Hilbert space).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.