Abstract

We propose a simple theoretical model for desertification processes based on three actors (soil, seeds, and plants) on a two-dimensional lattice. Each actor is described by a time dependent fermionic operator, and the dynamics is ruled by a self-adjoint Hamilton-like operator. We show that even taking into account only a few parameters, accounting for external actions on the ecosystem or the response to positive feedbacks, the model provides a plausible description of the desertification process, and can be adapted to different ecological landscapes. We first describe the simplified model in one cell. Then, we define the full model on a two-dimensional region, taking into account additional factors such as nonhomogeneities, the competition for resources between plants, and the spread of seeds due to the action of wind or animals. This allows us to explore the effects of positive feedback on slowing down, stopping, or reversing the desertification process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.