Abstract

Pricing American options using partial (integro-)differential equation based methods leads to linear complementarity problems (LCPs). The numerical solution of these problems resulting from the Black-Scholes model, Kou’s jump-diffusion model, and Heston’s stochastic volatility model are considered. The finite difference discretization is described. The solutions of the discrete LCPs are approximated using an operator splitting method which separates the linear problem and the early exercise constraint to two fractional steps. The numerical experiments demonstrate that the prices of options can be computed in a few milliseconds on a PC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call