Abstract

A Fréchet space with a two-sided Schauder basis is constructed, such that the corresponding bilateral shift is continuous and invertible, and has no common nontrivial invariant subspace with its inverse. This shows in particular, that the problem of existence of hyperinvariant subspaces for operators on general Fréchet spaces, admits a negative answer. It is also shown that the dual of the Fréchet space constructed can be identified with a commutative locally convex complete topological algebra with unit, which has no closed nontrivial ideals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.