Abstract

In many applications of conformal field theory one encounters twisted conformal fields, i.e. fields which have branch cut singularities on the relevant Riemann surfaces. We present a geometrical framework describing twisted conformal fields on Riemann surfaces of arbitrary genus which is alternative to the standard method of coverings. We further illustrate the theory of twisted Grassmannians and its relation with the representation theory of the twisted oscillator algebras. As an application of the above, we expound an operator formalism for orbifold strings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.