Abstract

Nitrogen fertilization plays a key role in rice productivity and environmental impact of rice-based cropping systems, as well as on farmers’ income, representing one of the main cost items of rice farming. Average nitrogen use efficiency in rice paddies is often very low (about 30%), leading to groundwater contamination, greenhouse gases emission, and economic losses for farmers. The resulting pressure on many actors in the rice production chain has generated a need for operational tools and techniques able to increase nitrogen use efficiency. We present an operational workflow for producing nitrogen nutritional index (NNI) maps at sub-field scale based on the combined use of high-resolution satellite images and ground-based estimates of Leaf Area Index (LAI) and plant nitrogen concentration (PNC, %) data collected using smart apps. The workflow was tested in northern Italy. The analysis reveals that vegetation indices are satisfactorily correlated with LAI (r2 > 0.77, p < 0.01) and PNC (r2 > 0.55, p < 0.01); whereas most patterns of NNI maps are coherent with the available information on soil texture and performed agro-practices. Key features of the proposed approach are (i) the time- and cost-effectiveness for producing NNI maps even in operational contexts and (ii) the full exploitation of smart scouting techniques to drive field data acquisitions using smartphones as sensors. The use of operational, free-of-charge products from Sentinel-2 for real-time field monitoring to potentially support variable rate fertilizations is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.