Abstract

As part of its development of post-accident management tools, the French Institute for Radiological Protection and Nuclear Safety is setting up a model to simulate radionuclide dispersion in the Toulon marine area (one of France’s main military ports). The model is based on the MARS 3D code developed by IFREMER. It reproduces hydro-sedimentation phenomena in the Bay of Toulon with a horizontal spatial resolution of 100 m and 30 vertical sigma levels and also factors in radioactive decay and dissolved/particulate distribution of the radionuclides studied. With no tide, the major currents in this area are generated by the wind. The model effectively reproduces the resulting hydrodynamic phenomena, which were measured throughout the summer of 2009 in the channel that links the Little Bay to the Large Bay of Toulon. When the Mistral (wind from the West/Northwest) blows, a surface current quickly appears, which pushes water southwards from the Little Bay, and which is offset by a bottom current (upwellings). When the wind blows from the East, the currents move in the opposite direction, and southeasterly waves, dependent on wind strength and fetch, occur in the Large Bay. Here, we give an example of the simulated dispersion of radionuclides released directly into the surface waters near the Arsenal, demonstrating the constraint relative to dispersion generated by the half-closed configuration of the Little Bay. Sediment in the Little Bay also forms an area where the most highly reactive radionuclides would accumulate, and where the lack of waves has the effect of considerably limiting the phenomena of resuspension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.