Abstract

Monitoring evapotranspiration in arid and semi-arid environments plays a key role in water irrigation scheduling for water use efficiency. This work presents an operational method for evapotranspiration retrievals based on disaggregated Land Surface Temperature (LST). The retrieved LSTs from Landsat-8 and MODIS data were merged in order to provide an 8-day composite LST product at 100×100m resolution. The method was tested in the arid region of Copiapó, Chile using data from years 2013–2014 and validated using data from years 2015–2016. In-situ measurements from agrometeorological stations such as air temperature and potential evapotranspiration (ET0) estimated at the location were used in the ET estimation method. The disaggregation method was developed by taking into account (1) the spatial relationship between Landsat-8 and MODIS LST, (2) the spatial relationship between LST and the Normalized Difference Vegetation Index (NDVI) at high spatial resolution (Landsat-8), and (3) the temporal variations along the year of both relationships aforementioned. The comparison between disaggregated LST at 100m resolution and in situ LST measurements presents a coefficient of determination (r2), in average, equal to 0.70 and a RMSE equal to 3.6K. The disaggregated LST was used in an operational model to estimate the actual evapotranspiration (ETa). The ETa shows good results in terms of seasonal variations and in comparison to the evapotranspiration estimated by using crop coefficients (kc). The comparison between remotely sensed and in situ ETa presents an overall r2 close to 0.67 and a RMSE equal to 0.6mmday−1 for both crops. These results are important for further improvements in water use sustainability in the Copiapó valley, which is currently affected by high water demand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.