Abstract

Monitorability underpins the technique of Runtime Verification because it delineates what properties can be verified at runtime. Although many monitorability definitions exist, few are defined explicitly in terms of the operational guarantees provided by monitors, i.e., the computational entities carrying out the verification. We view monitorability as a spectrum, where the fewer guarantees that are required of monitors, the more properties become monitorable. Accordingly, we present a monitorability hierarchy based on this trade-off. For regular specifications, we give syntactic characterisations in Hennessy–Milner logic with recursion for its levels. Finally, we map existing monitorability definitions into our hierarchy. Hence our work gives a unified framework that makes the operational assumptions and guarantees of each definition explicit. This provides a rigorous foundation that can inform design choices and correctness claims for runtime verification tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.