Abstract

The gap between medical research on diagnostic testing and clinical workflow can lead to rejection of valuable medical research in a busy clinical environment due to increased workloads, or rejection of medical research in the laboratory that may be valuable in practice due to a misunderstanding of the system‐level benefits of the new test. This has implications for research organizations, diagnostic test manufacturers, and hospital managers among others. To bridge this gap, we develop a Markov decision process (MDP) from which we create “adoption regions” that specify the combination of test characteristics medical research must achieve for the test to be feasible for adoption in practice. To address the curse of dimensionality from patient risk stratification, we develop a decomposition algorithm along with structural properties that shed light on which patients and when a new diagnostic test should be used. In a case study of a partner Emergency Department, we show that the conventional myopic medical criterion can lead to poor decision making in both research development and clinical practice. In particular, we find that specificity—long a secondary consideration and often overlooked in the research process—is, in fact, the key to effective implementation of new tests into clinical environments. This myopic approach can lead to overvaluing or undervaluing new medical research. This mismatch is accentuated when a simple (current) policy is used to integrate research into the clinical environment compared with our MDP’s policy—poor implementation of a new test can also lead to unnecessary rejection. Our framework provides easily interpretable guidelines for medical research development and clinical adoption decisions that can guide medical research as to which test characteristics to focus on to improve the chances of adoption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.