Abstract

The changes that positive or negative results cause in an individual's behavior are called Operant Conditioning. This paper introduces an operant conditioning approach (OCA) for large scale swarm optimization models. The proposed approach has been applied to social learning particle swarm optimization (SL-PSO), a variant of the PSO algorithm. In SL-PSO, the swarm particles are sorted according to the objective function and all particles are updated with learning from the others. In this study, each particle's learning rate is determined by the mathematical functions that are inspired by the operant conditioning. The proposed approach adjusts the learning rate for each particle. By using the learning rate, a particle close to the optimum solution is aimed to learn less. Thanks to the learning rate, a particle is prevented from being affected by particles close to the optimum point and particles far from the optimum point at the same rate. The proposed OCA-SL-PSO is compared with SL- PSO and pure PSO on CEC 13 functions. Also, the proposed OCA-SL-PSO is tested for large-scale optimization (100-D, 500-D, and 1000-D) benchmark functions. This paper has a novel contribution which is the usage of OCA on Social Optimization Algorithms. The results clearly indicate that the OCA is increasing the results of large-scale SL-PSO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call