Abstract
We study certain notions of $N$-ary non-commutative independence, which generalize free, Boolean, and monotone independence. For every rooted subtree $\mathcal{T}$ of an $N$-regular rooted tree, we define the $\mathcal{T}$-free product of $N$ non-com
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.