Abstract

In this paper, we present an open-source framework for testing tracking devices in surgical navigation applications. At the core of image-guided intervention systems is the tracking interface that handles communication with the tracking device and gathers tracking information. Given that the correctness of tracking information is critical for protecting patient safety and for ensuring the successful execution of an intervention, the tracking software component needs to be thoroughly tested on a regular basis. Furthermore, with widespread use of extreme programming methodology that emphasizes continuous and incremental testing of application components, testing design becomes critical. While it is easy to automate most of the testing process, it is often more difficult to test components that require manual intervention such as tracking device. Our framework consists of a robotic arm built from a set of Lego Mindstorms™ and an open-source toolkit written in C++ to control the robot movements and assess the accuracy of the tracking devices. The application program interface (API) is cross-platform and runs on Windows, Linux and MacOS. We applied this framework for the continuous testing of the Image-Guided Surgery Toolkit (IGSTK), an open-source toolkit for image-guided surgery and shown that regression testing on tracking devices can be performed at low cost and improve significantly the quality of the software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.