Abstract

A new frequency-domain dynamics model has been developed that uses open-source components to efficiently represent a complete floating wind turbine system. The model, called RAFT (Response Amplitudes of Floating Turbines), incorporates quasi-static mooring reactions, strip-theory and potential-flow hydrodynamics, blade-element-momentum aerodynamics, and linear turbine control. The formulation is compatible with a wide variety of support structure configurations and no manual or time-domain preprocessing steps are required, making RAFT very practical in design and optimization workflows. The model is applied to three reference floating wind turbine designs and its predictions are compared with results from time-domain OpenFAST simulations. There is good agreement in mean offsets as well the statistics and spectra of the dynamic response, verifying RAFT’s general suitability for floating wind analysis. Follow-on work will include verification of potential-flow and turbine-control features and application to optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.