Abstract
Abstract Studies of bulk power system operations need to incorporate uncertainty and sensitivity analyses, especially around exposure to weather and climate variability and extremes, but this remains a computational modeling challenge. Commercial production cost models (PCMs) have shorter runtimes, but also important limitations (opacity, license restrictions) that do not fully support stochastic simulation. Open-source PCMs represent a potential solution. They allow for multiple, simultaneous runs in high-performance computing environments and offer flexibility in model parameterization. Yet, developers must balance computational speed (i.e. runtime) with model fidelity (i.e. accuracy). In this paper, we present Grid Operations (GO), a framework for instantiating open-source, scale-adaptive PCMs. GO allows users to search across parameter spaces to identify model versions that appropriately balance computational speed and fidelity based on experimental needs and resource limits. Results provide generalizable insights on how to navigate the fidelity and computational speed tradeoff through parameter selection. We show that models with coarser network topologies can accurately mimic market operations, sometimes better than higher-resolution models. It is thus possible to conduct large simulation experiments that characterize operational risks related to climate and weather extremes while maintaining sufficient model accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.