Abstract
ABSTRACT Introduction Advancements in computer-aided design programs, additive manufacturing, and open-source image editing software offer the possibility of designing, printing, and fitting transitional prosthetic hands and other prosthetic devices at very low cost. The development and use of 3D-printed transitional prosthetic devices to increase range of motion (ROM), strength, and other relevant variables would have a significant clinical impact for children with upper-limb deficiencies. Thus, the purpose of this study was to identify anthropometric, active ROM, and strength changes after 6 months of using a wrist-driven 3D-printed transitional prosthetic hand for children with upper-limb deficiencies. Materials and Methods Anthropometric, active ROM, and strength measurements were assessed before and after 6 months of using a 3D-printed transitional hand prosthesis. Five children (two girls and three boys, 3–10 years of age) with absent digits (one traumatic and four congenital) participated in this study and were fitted with a 3D-printed transitional hand prosthesis. Results There were significant hand × time interactions for the forearm circumference (p = 0.02), active ROM for flexion (p = 0.02), and extension values (p = 0.04). There were no significant hand × time interactions, however, for wrist flexion strength (p = 0.29), wrist extension strength (p = 0.84), active ROM for ulnar deviation (p = 0.5), active ROM for radial deviation (p = 0.25), and forearm skinfold values (p = 0.11). Conclusion Although durability, environment, and lack of printing standards for the manufacturing of 3D-printed prostheses are factors to consider when using these types of devices, the practicality and cost-effectiveness represent a promising new option for clinicians and those patients with upper-limb deficiencies living in developing countries. Thus, the Cyborg Beast transitional prosthetic hand represents a low-cost prosthetic solution for those in need of a transitional device to increase ROM and forearm circumference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.