Abstract
A crystalline porous metal–organic framework Cu(BDC) was synthesized, and characterized by several techniques, including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), atomic absorption spectrophotometry (AAS), hydrogen temperature-programmed reduction (H2-TPR), and nitrogen physisorption measurements. The Cu(BDC) exhibited high catalytic activity for the modified Friedländer transformation using 2-aminobenzyl alcohol as the starting material, thus offering advantages over the conventional Friedländer reaction in terms of avoiding the problems associated with the storage of the highly unstable 2-aminobenzaldehyde. Moreover, the Cu(BDC) could offer significantly higher catalytic activity than that of other Cu-MOFs such as Cu3(BTC)2, Cu(BPDC), and Cu2(BDC)2(DABCO). The catalyst could be recovered and reused several times without a significant degradation in catalytic activity. The modified Friedländer reaction could only occur in the presence of the solid Cu(BDC) with no contribution from leached active species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.