Abstract

BackgroundCurrent research suggests that protein intake of 1.5 – 2.8 g/kg/day (3.5 times the current recommended daily allowance) is effective and safe for individuals trying to increase or maintain lean muscle mass. To achieve these levels of daily protein consumption, supplementing the diet with processed whey protein concentrate (WPC) in liquid form has become a popular choice for many people. Some products have a suggested serving size as high as 50 g of protein. However, due to possible inhibition of endogenous digestive enzymes from over-processing and rapid small intestine transit time, the average amount of liquid WPC that is absorbed may be only 15 g. The combined effect of these factors may contribute to incomplete digestion, thereby limiting the absorption rate of protein before it reaches the ceacum and is eliminated as waste. The purpose of this study was to determine if Aminogen®, a patented blend of digestive proteases from Aspergillus niger and Aspergillus oryzae, would significantly increase the in-vivo absorption rate of processed WPC over control values. It also investigated if any increase would be sufficient to significantly alter nitrogen (N2) balance and C-reactive protein (CRP) levels over control values as further evidence of increased WPC absorption rate.MethodsTwo groups of healthy male subjects were assigned a specified balanced diet before and after each of two legs of the study. Subjects served as their own controls. In the first leg each control group (CG) was dosed with 50 g of WPC following an overnight fast. Nine days later each test group (TG) was dosed following an overnight fast with 50 g of WPC containing either 2.5 g (A2.5) or 5 g (A5) of Aminogen®. Blood samples were collected during each leg at 0 hr, 0.5 hr, 1 hr, 2 hr, 3 hr, 3.5 hr and 4 hr for amino acid (AA) and CRP analyses. The following 18 AAs were quantified: alanine, arginine, aspartic acid, cysteine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine. Urine was collected for 24 hours from 0 hr for total N2 analysis. Results are expressed as means ± SEM. All significance and power testing on results was done at a level of alpha = 0.05. Area under the concentration time curve (AUC) was calculated using the trapezoidal rule. One-way analysis of variance (ANOVA-1) was done between CGs, between TGs and between time points. One-way repeated measures analysis of variance (ANOVA-1-RM) was done to compare CGs and TGs. Two-way analysis of variance (ANOVA-2) was performed on total serum amino acid (TSAA) levels, urine N2 levels and CRP levels between each CG and TG.ResultsAfter baseline subtraction the mean AUC was significantly (p ≤ 0.05) greater in each TG compared the corresponding CG. Comparison of the mean AUC between each TG and each CG was not significantly different. Total serum amino acid (TSAA) levels were significantly greater in each TG compared the corresponding CG. They were also significantly different between each TG but not between each CG. All individual serum amino acid (ISAA) levels in TG-A2.5 except glycine, histidine, methionine and serine were significantly higher than in CG-A2.5 at 4 hr. All ISAA levels in TG-A5 except methionine and serine were significantly higher than in CG-A5 at 4 hr. The N2 balance was significantly higher in each TG compared to the corresponding CG, but not significantly different between each CG and between each TG. Significant differences in CRP levels are reported between each TG compared to the corresponding CG, but not significantly different between each TG and between each CG.ConclusionA patented blend of digestive proteases (Aminogen®) increased the absorption rate of processed WPC over controls, as measured by statistically significant increases in AUC, TSAA levels, ISAA levels and N2 balance. Significant decreases in CRP levels and fluxes in AA levels are also reported.

Highlights

  • Current research suggests that protein intake of 1.5 – 2.8 g/kg/day (3.5 times the current recommended daily allowance) is effective and safe for individuals trying to increase or maintain lean muscle mass

  • Total serum amino acid (TSAA) levels were significantly greater in each Test Group (TG) compared the corresponding Control Group (CG)

  • Analysis of Total Serum Amino Acids (TSAA) kinetic profiles of all groups showed a progressive, time-dependant increase through 4 hr

Read more

Summary

Introduction

Current research suggests that protein intake of 1.5 – 2.8 g/kg/day (3.5 times the current recommended daily allowance) is effective and safe for individuals trying to increase or maintain lean muscle mass. To achieve these levels of daily protein consumption, supplementing the diet with processed whey protein concentrate (WPC) in liquid form has become a popular choice for many people. Protein intake as high as 2.8 g/kg/day (3.5 times the current recommended daily allowance) was reported to have no adverse effects on renal function [4] To help achieve these high levels of protein intake, some WPC products have a suggested serving size of 50 g. Increasing the amount of WPC digested, before it reaches the ceacum, may increase the absorption rate and the desired outcome of a high protein diet

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call