Abstract

Modern machine learning and autonomous experimentation schemes in materials science rely on accurate analysis of the data ingested by these models. Unfortunately, accurate analysis of the underlying data can be difficult, even for domain experts, complicating the training of the models intended to drive experiments. This is especially true when the goal is to identify the presence of weak signatures in diffraction or spectroscopic datasets. In this work, we examine a set of as-obtained diffraction data that track the phase transition from monoclinic to tetragonal in a Nb-doped VO2 film as a function of temperature and dopant concentration. We then task a set of domain experts and a set of machine learning experts with identifying which phase is present in each diffraction pattern manually and algorithmically, respectively; in both cases, the labels can vary dramatically, especially at the phase boundaries. We use the mode of the labels and the Shannon entropy as a method to capture, preserve and propagate consensus labels and their variance. Further we use the expert labels as a benchmark and demonstrate the use of Shannon entropy weighted scoring to test the performance of machine learning generated labels. Finally, we propose a material data challenge centered around generating improved labeling algorithms. This real-world dataset curated with expert labels can act as test bed for new algorithms. The raw data, annotations and code used in this study are all available online at data.gov and the interested reader is encouraged to replicate and improve the existing models

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call