Abstract

Of all of the material parameters associated with a semiconductor, the carrier lifetime is by far the most complex and dynamic, being a function of the dominant recombination mechanism, the equilibrium number of carriers, the perturbations in carriers (e.g., carrier injection), and the temperature, to name the most prominent variables. The carrier lifetime is one of the most important parameters in bipolar devices, greatly affecting conductivity modulation, on-state voltage, and reverse recovery. Carrier lifetime is also a useful metric for device fabrication process control and material quality. As it is such a dynamic quantity, carrier lifetime cannot be quoted in a general range such as mobility; it must be measured. The following describes a stand-alone, wide-injection range open circuit voltage decay system with unique lifetime extraction algorithms. The system is initially used along with various lifetime spectroscopy techniques to extract fundamental recombination parameters from a commercial high-voltage PIN diode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.