Abstract

Large-scale disasters pose significant response challenges for all governmental organizations and the general public. Several difficulties usually occur during the response efforts, making it important for the authorities to take timely key decisions to mitigate and recover from disastrous or emergency situations. We herein present an ontology-supported hybrid reasoning model by integrating case-based reasoning and rule-based reasoning with implementation support for decision-makers to effectively respond in case of emergencies. We also introduce a new hierarchically organized semantic knowledge representation model to represent the case base structure that enhances case-based reasoning to knowledge-intensive case-based reasoning. In addition, we obtain experimental results on the analysis of the proposed approach in terms of the efficiency of the decision support system. Hence, it seems reasonable to merge the advantages of both approaches using a hybrid model of knowledge representation. The model output presents an estimation of the number of resources to be deployed if an emergency occurs. The proposed approaches for both the knowledge representation structure and the inference algorithm have proved to improve the accuracy of recommendation in emergencies. The results show that our hybrid system approach is efficient in decision support. The ontology-supported hybrid reasoning approach is also further validated using subjective evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call