Abstract
The main goal of process mining is discovering models from event logs. The usefulness of these discovered models is directly related to the quality of event logs. Researchers proposed various solutions to detect deficiencies and improve the quality of event logs; however, only a few have considered the application of a reliable external source for the improvement of the quality of event data. In this paper, we propose a method to repair the event log using the database bin log. We show that database operations can be employed to overcome the inadequacies of the event logs, including incorrect and missing data. To this end, we, first, extract an ontology from each of the event logs and the bin log. Then, we match the extracted ontologies and remove inadequacies from the event log. The results show the stability of our proposed model and its superiority over related works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Metadata, Semantics and Ontologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.