Abstract
The ontology alignment has two kinds of major problems. First, the features used for ontology alignment are usually defined by experts, but it is highly possible for some critical features to be excluded from the feature set. Second, the semantic and the structural similarities are usually computed independently, and then they are combined in an ad-hoc way where the weights are determined heuristically. This paper proposes the modified parse tree kernel (MPTK) for ontology alignment. In order to compute the similarity between entities in the ontologies, a tree is adopted as a representation of an ontology. After transforming an ontology into a set of trees, their similarity is computed using MPTK without explicit enumeration of features. In computing the similarity between trees,the approximate string matching is adopted to naturally reflect not only the structural information but also the semantic information. According to a series of experiments with a standard data set, the kernel method outperforms other structural similarities such as GMO. In addition, the proposed method shows the state-of-the-art performance in the ontology alignment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.