Abstract

The present study proposes a new approach for detecting trace amounts of creatinine (Cre) through the utilization of a fluorescence sensor system consisting of nitrogen doped carbon dots (NCDs) and gold ions (Au3+). Yellow fluorescent carbon dots were prepared using a one-step hydrothermal method with o-phenylenediamine and isopropanol as raw materials. First, gold ions are reduced to gold nanoparticles (Au NPs), which bind to NCDs, resulting in electron transfer and fluorescence quenching of NCDs. After adding creatinine, Cre and Au NPs were preferentially combined to form non-fluorescent complexes, and the NCDs fluorescence was restored. The study achieved a detection limit of 1.06 × 10-7 M for Au3+ and 9.29 × 10-9 M for creatinine, indicating a high level of sensitivity. The sensing system has also been successfully utilized for detecting Au3+ in lake water and Cre in human urine, indicating its promising potential and practical applications in the areas of environmental monitoring and biosensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call