Abstract

Modeling of dynamic manufacturing processes with slow drift using data-driven approaches is challenging because most data-driven models are trained by off-line data. In this paper, we propose to track slow drift of manufacturing processes using an online Bayesian Auto-Regression eXogenous (ARX) model with time-variant parameters. The model parameters are trained off-line and are updated online using Bayes’ rule. To avoid the frequent online model update, a Sample Importance (SI) test is proposed to screen online samples and only the sample that passes SI test is incremented to the VM model. The SI test decides the importance of the sample by collectively considering sample freshness, model prediction error and prediction uncertainty. Furthermore, the SI test is applied to off-line Data Base (DB) and an iteration algorithm is devised for off-line sample selection. The off-line sample selection algorithm can effectively reduce the sample redundancy in off-line DB while maintaining the model performance. To validate the effectiveness of the proposed method, Prognostics and Health Management (PHM) data challenge 2016 dataset is employed to predict material removal rate of chemical-mechanical planarization process. The validation results indicate that the proposed method outperforms existing state-of-art approaches in literature such as Just-in-Time (JIT) and deep learning models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.