Abstract

BackgroundMalaria control programmes across Africa and beyond are facing increasing insecticide resistance in the major anopheline vectors. In order to preserve or prolong the effectiveness of the main malaria vector interventions, up-to-date and easily accessible insecticide resistance data that are interpretable at operationally-relevant scales are critical. Herein we introduce and demonstrate the usefulness of an online mapping tool, IR Mapper.MethodsA systematic search of published, peer-reviewed literature was performed and Anopheles insecticide susceptibility and resistance mechanisms data were extracted and added to a database after a two-level verification process. IR Mapper ( http://www.irmapper.com) was developed using the ArcGIS for JavaScript Application Programming Interface and ArcGIS Online platform for exploration and projection of these data.ResultsLiterature searches yielded a total of 4,084 susceptibility data points for 1,505 populations, and 2,097 resistance mechanisms data points for 1,000 populations of Anopheles spp. tested via recommended WHO methods from 54 countries between 1954 and 2012. For the Afrotropical region, data were most abundant for populations of An. gambiae, and pyrethroids and DDT were more often used in susceptibility assays (51.1 and 26.8% of all reports, respectively) than carbamates and organophosphates. Between 2001 and 2012, there was a clear increase in prevalence and distribution of confirmed resistance of An. gambiae s.l. to pyrethroids (from 41 to 87% of the mosquito populations tested) and DDT (from 64 to 91%) throughout the Afrotropical region. Metabolic resistance mechanisms were detected in western and eastern African populations and the two kdr mutations (L1014S and L1014F) were widespread. For An. funestus s.l., relatively few populations were tested, although in 2010–2012 resistance was reported in 50% of 10 populations tested. Maps are provided to illustrate the use of IR Mapper and the distribution of insecticide resistance in malaria vectors in Africa.ConclusionsThe increasing pyrethroid and DDT resistance in Anopheles in the Afrotropical region is alarming. Urgent attention should be afforded to testing An. funestus populations especially for metabolic resistance mechanisms. IR Mapper is a useful tool for investigating temporal and spatial trends in Anopheles resistance to support the pragmatic use of insecticidal interventions.

Highlights

  • Malaria control programmes across Africa and beyond are facing increasing insecticide resistance in the major anopheline vectors

  • The example screenshot of the Insecticide resistance (IR) Mapper online user interface shown in Figure 2 depicts recorded pyrethroid resistance and detected elevated monooxygenase activity, elevated esterase activity, and/or kdr mutations for Anopheles spp. populations collected from 2001 to 2013

  • Susceptibility bioassays Insecticide susceptibility data were recorded for 28 countries and resistance mechanisms data for 31 countries out of the 54 in the African region

Read more

Summary

Introduction

Malaria control programmes across Africa and beyond are facing increasing insecticide resistance in the major anopheline vectors. Malaria remains one of the major disease burdens globally with over 207 million cases and 627,000 deaths estimated in 2012, mainly in children under 5 years old and predominantly in Africa [1]. Adult An. gambiae s.s., An. coluzzii and An. funestus s.s. prefer feeding on humans and resting inside human habitations, while An. arabiensis will feed on either humans or cattle and rest indoors or outdoors making this vector more difficult to control [5,6,7]. Larviciding and/or larval habitat modification is not always simple or feasible

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call