Abstract
Terrain classification information is of great significance for legged robots to traverse various terrains. Therefore, this communication presents an online terrain classification framework for legged robots, utilizing the acoustic signals produced during locomotion. The Mel-Frequency Cepstral Coefficient (MFCC) feature vectors are extracted from the acoustic data recorded by an on-board microphone. Then the Gaussian mixture models (GMMs) are used to classify the MFCC features into different terrain type categories. The proposed framework was validated on a quadruped robot. Overall, our investigations achieved a classification time-resolution of 1 s when the robot trotted over three kinds of terrains, thus recording a comprehensive success rate of 92.7%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.