Abstract

The growing scale and complexity of component interactions in cloud computing systems post great challenges for operators to understand the characteristics of system performance. Profiling has long been proved to be an effective approach to performance analysis; however, existing approaches confront new challenges that emerge in cloud computing systems. First, the efficiency of the profiling becomes of critical concern; second, service-oriented profiling should be considered to support separation-of-concerns performance analysis. To address the above issues, in this paper, we present P-Tracer, an online performance profiling tool specifically tailored for cloud computing systems. P-Tracer constructs a specific search engine that proactively processes performance logs and generates a particular index for fast queries; second, for each service, P-Tracer retrieves a statistical insight of performance characteristics from multi-dimensions and provides operators with a suite of web-based interfaces to query the critical information. We evaluate P-Tracer in the aspects of tracing overheads, data preprocessing scalability and querying efficiency. Three real-world case studies that happened in Alibaba cloud computing platform demonstrate that P-Tracer can help operators understand software behaviors and localize the primary causes of performance anomalies effectively and efficiently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.