Abstract
A self-constructing neural fuzzy inference network (SONFIN) with online learning ability is proposed in this paper. The SONFIN is inherently a modified Takagi-Sugeno-Kang (TSK)-type fuzzy rule-based model possessing neural network learning ability. There are no rules initially in the SONFIN. They are created and adapted as online learning proceeds via simultaneous structure and parameter identification. In the structure identification of the precondition part, the input space is partitioned in a flexible way according to an aligned clustering-based algorithm. As to the structure identification of the consequent part, only a singleton value selected by a clustering method is assigned to each rule initially. Afterwards, some additional significant terms selected via a projection-based correlation measure for each rule will be added to the consequent part incrementally as learning proceeds. The combined precondition and consequent structure identification scheme can set up an economic and dynamically growing network, a main feature of the SONFIN. In the parameter identification, the consequent parameters are tuned optimally by either least mean squares or recursive least squares algorithms and the precondition parameters are tuned by a backpropagation algorithm. To enhance the knowledge representation ability of the SONFIN, a linear transformation for each input variable can be incorporated into the network so that much fewer rules are needed or higher accuracy can be achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.