Abstract

As efficient traffic-management platforms, public vehicle (PV) systems are envisioned to be a promising approach to solving traffic congestions and pollutions for future smart cities. PV systems provide online/dynamic peer-to-peer ride-sharing services with the goal of serving sufficient number of customers with minimum number of vehicles and lowest possible cost. A key component of the PV system is the online ride-sharing scheduling strategy. In this paper, we propose an efficient path planning strategy that focuses on a limited potential search area for each vehicle by filtering out the requests that violate passenger service quality level, so that the global search is reduced to local search. We analyze the performance of the proposed solution such as reduction ratio of computational complexity. Simulations based on the Manhattan taxi data set show that, the computing time is reduced by 22% compared with the exhaustive search method under the same service quality performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.