Abstract
<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> This paper presents a novel online relevant set algorithm for a linearly scored block sequence translation model. The key component is a new procedure to directly optimize the global scoring function used by a statistical machine translation (SMT) decoder. This training procedure treats the decoder as a black-box, and thus can be used to optimize any decoding scheme. The novel algorithm is evaluated using different feature types: 1) commonly used probabilistic features, such as translation, language, or distortion model probabilities, and 2) binary features. In particular, encouraging results on a standard Arabic–English translation task are presented for a translation system that uses only binary feature functions. To further demonstrate the effectiveness of the novel training algorithm, a detailed comparison with the widely used minimum-error-rate (MER) training algorithm is presented using the same decoder and feature set. The online algorithm is simplified by introducing so-called “seed” block sequences which enable the training to be carried out without a gold standard block translation. While the online training algorithm is extremely fast, it also improves translation scores over the MER algorithm in some experiments. </para>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.