Abstract
The output prediction of blast furnace gas (BFG), influenced by many complex production factors, is a very important and difficult problem concerning the byproduct gas balance in steel industry. A new online least squares support vector machine (LSSVM) prediction model is proposed in this paper, in which the training data is filtered by an improved empirical mode decomposition threshold filtering (IEMDTF). The model is solved and optimized by an online learning algorithm and an online bayesian parameters optimization, respectively. The experimental results using practical BFG output data from BaoSteel Co. Ltd., China show the proposed model is effective and enable to offer reasonable gas balance scheduling for operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.