Abstract

A new analytical technique has been developed to determine from Langmuir probe characteristics the electron number densities, electron energy distribution functions and electron temperatures in thermal and near-thermal afterglow plasmas. This technique utilises a standard personal computer equipped with a simple 12-bit analogue/digital and digital/analogue converters coupled to the Langmuire probe via a specially designed differential amplifier. The energy distribution functions are obtained by numerical differentiation of the probe characteristics using a fast noise-suppressing numerical technique, the mathematical principles of which are discussed in some detail. Some sample data, which have been obtained in truly thermalised helium flowing afterglows and in argon flowing afterglow at elevated electron temperatures, are presented to demonstrate the value of this new analytical technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.