Abstract
The attainment of a satisfactory operating point is one of the main problems in the tuning of particle accelerators. These are extremely complex facilities, characterized by the absence of a model that accurately describes their dynamics, and by an often persistent noise which, along with machine drifts, affects their behaviour in unpredictable ways. In this paper, we propose an online iterative Linear Quadratic Regulator (iLQR) approach to tackle this problem on the FERMI free-electron laser of Elettra Sincrotrone Trieste. It consists of a model identification performed by a neural network trained on data collected from the real facility, followed by the application of the iLQR in a Model-Predictive Control fashion. We perform several experiments, training the neural network with increasing amount of data, in order to understand what level of model accuracy is needed to accomplish the task. We empirically show that the online iLQR results, on average, in fewer steps than a simple gradient ascent (GA), and requires a less accurate neural network to achieve the goal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.