Abstract
We study the design of incentive mechanisms for the problem of information elicitation without verification (IEWV). In IEWV, a data requester seeks to design proper incentives to optimize the tradeoff between the quality of information (collected from distributed crowd workers) and the total cost of incentives (provided to crowd workers) without verifiable ground truth. While prior work often relies on sufficient knowledge of worker information, we study a scenario where the data requester cannot access workers’ heterogeneous information quality and costs ex-ante. We propose a continuum-armed bandit-based incentive mechanism that dynamically learns the optimal reward level from workers’ reported information. A key challenge is that the data requester cannot evaluate the workers’ information quality without verification, which motivates the design of an inference algorithm. The inference problem is non-convex, yet we reformulate it as a bi-convex problem and derive an approximate solution with a performance guarantee, which ensures the effectiveness of our online reward design. We further enhance the inference algorithm using part of the workers’ historical reports. We also propose a novel rule for the data requester to aggregate workers’ solutions more effectively. We show that our mechanism achieves a sub-linear regret <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\tilde {O}(T^{1/2})$ </tex-math></inline-formula> and outperforms several celebrated benchmarks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.