Abstract

Reproducing blood pressure (BP) and wall shear stress (WSS) in human common carotid arteries (HCCAs) under diverse physiological conditions is of importance for studying the effects of these hemodynamic stresses on the endothelial function in vitro. To date, microfluidics has emerged as a promising technology for replicating hemodynamic environments in the circulatory system in vitro. However, an on-chip microfluidic system which can precisely replicate the real hemodynamic stimuli has never been reported. In this paper, firstly, a lumped parameter hemodynamic model (LPHM) with a rectangular flat cell culture chamber design is proposed to describe the on-chip microfluidic system; secondly, the values for all the parameters of the proposed model are obtained by fitting the waveforms of the calculated BP and WSS in HCCAs; finally, an on-chip microfluidic system is designed based upon the structure diagram and parameters of the LPHM. The numerical simulation studies have demonstrated that the in vivo BP and WSS waveforms under either resting or exercise state can be precisely reproduced in the cell culture chamber of the designed on-chip microfluidic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.