Abstract

A CMOS image sensor (CIS) that can perform on-chip binary convolution is presented. The CIS can greatly reduce memory usage and computational complexity by directly generating a feature map for a binary neural network. The pixel readout of the CIS is performed in the column-parallel fashion using incremental delta-sigma analog-to-digital converters (ADCs). The CIS operates in two different modes: convolution and normal modes. When the column ADC is working in the convolution mode, it works as a first-order delta-sigma ADC and generates convolved images using a binary kernel. In the normal operation mode, the ADC is switched to a second-order delta-sigma ADC with little hardware modification and used to capture high-quality images. To demonstrate the CIS architecture, a 192 × 128-pixel CIS, which occupies an active die area of 14.44 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , is fabricated in a 0.18 μm standard CMOS process. The performance of the CIS is evaluated through measurements and network simulations. In the normal operation mode, the CIS achieves a read noise of 14.79 e <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-</sup> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">rms</sub> and a full-well capacity of 6,420 e <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-</sup> with a resulting dynamic range of 53 dB. The power consumptions of the CIS are 49.2 and 52.5 mW during the normal and convolution modes, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.