Abstract

Automotive Active Safety(AAS) is the main branch of intelligence automobile study and pedestrian detection is the key problem of AAS, because it is related with the casualties of most vehicle accidents. For on-board pedestrian detection algorithms, the main problem is to balance efficiency and accuracy to make the on-board system available in real scenes, so an on-board pedestrian detection and warning system with the algorithm considered the features of side pedestrian is proposed. The system includes two modules, pedestrian detecting and warning module. Haar feature and a cascade of stage classifiers trained by Adaboost are first applied, and then HOG feature and SVM classifier are used to refine false positives. To make these time-consuming algorithms available in real-time use, a divide-window method together with operator context scanning(OCS) method are applied to increase efficiency. To merge the velocity information of the automotive, the distance of the detected pedestrian is also obtained, so the system could judge if there is a potential danger for the pedestrian in the front. With a new dataset captured in urban environment with side pedestrians on zebra, the embedded system and its algorithm perform an on-board available result on side pedestrian detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.