Abstract

This paper develops a Square Root Unscented Kalman Filter (SRUKF) for performing video-rate visual simultaneous localization and mapping (SLAM) using a single camera. The conventional UKF has been proposed previously for SLAM, improving the handling of nonlinearities compared with the more widely used Extended Kalman Filter (EKF). However, no account was taken of the comparative complexity of the algorithms: In SLAM, the UKF scales as O(N;{3}) in the state length, compared to the EKF's O(N;{2}), making it unsuitable for video-rate applications with other than unrealistically few scene points. Here, it is shown that the SRUKF provides the same results as the UKF to within machine accuracy and that it can be reposed with complexity O(N;{2}) for state estimation in visual SLAM. This paper presents results from video-rate experiments on live imagery. Trials using synthesized data show that the consistency of the SRUKF is routinely better than that of the EKF, but that its overall cost settles at an order of magnitude greater than the EKF for large scenes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.