Abstract
We have designed, developed and evaluated an innovative portable magneto-optical detector (MOD) in which a light beam with variable polarization passes through a fluid sample immersed in a variable magnetic field. The light intensity is measured downstream along the forward scattering direction. The field is turned on and off through the in-and-out motion of nearby permanent magnets. As a result, for sufficiently magnetically and optically anisotropic samples, the optical absorption is sensitive to changes in the light polarization. Both detection and characterization applications are therefore available. For instance, both the degree of malaria infection can be measured and hemozoin crystalline properties can be studied. We present experimental results for synthetic hemozoin, and describe them in terms of the basic physics and chemistry underlying the correlations of the directions of the external magnetic field and the light beam polarization. We connect this work to a commercialized product for malaria detection and compare it to other magneto-optical instruments and methods. We conduct tests of absorption parameters, the electric polarizability tensor, and we discuss the connection to magnetic and electric dipole moments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.