Abstract
Underwater Internet-of-Things (UIoT) is an extension of Internet-of-Things technology in underwater. The underwater acoustic network with WiFi architecture (UW-WiFi), as a specific deployment of UIoT, has been proved to be a promising technique for wide-ranging marine applications. However, due to the unique features of underwater acoustic channel, such as long and variable propagation delay, low available bandwidth and high bit error rate, conventional medium access control (MAC) protocols designed for terrestrial WiFi networks need an overhaul to work efficiently for UW-WiFi networks. In consideration of the aforementioned channel features, different demands of nodes to occupy channel resources and the reliability of data transmission, a time sequence-based dynamic on-demand assignment (SDDA) MAC protocol for UW-WiFi networks is proposed in this paper. In SDDA, the collision-free scheduling is integrated with the reservation mechanism, aiming to address the issue of various access requirements of diverse task nodes on channel resources in the UW-WiFi network system. The designed protocol employs propagation delays and the amount of data to be sent by terminal nodes to achieve non-conflict transmissions of control packets and on-demand scheduling of data packets. Additionally, the scheme does not require extra overhead for time synchronization. Comparison simulations demonstrate that SDDA provides considerable benefits in terms of channel utilization, end-to-end delay and packet delivery ratio. At last, the SDDA protocol is implemented and a UW-WiFi network system is set up in the marine environment. The ocean field experiment results agree well with the simulated ones and also verify that the proposed protocol achieve conflict-free on-demand scheduling, fairness among terminal nodes at different ranges and the practicability in actual environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.