Abstract

Engineered surfaces that repel pathogens are of great interest due to their role in mitigating the spread of infectious diseases. A robust, universal, and scalable omniphobic spray coating with excellent repellency against water, oil, and pathogens is presented. The coating is substrate-independent and relies on hierarchically structured polydimethylsiloxane (PDMS) microparticles, decorated with gold nanoparticles (AuNPs). Wettability studies reveal the relationship between surface texturing of micro- and/or nano-hierarchical structures and the omniphobicity of the coating. Studies of pathogen transfer with bacteria and viruses reveal that an uncoated contaminated glove transfers pathogens to >50 subsequent surfaces, while a coated glove picks up 104 (over 99.99%) less pathogens upon first contact and transfers zero pathogens after the second touch. The developed coating also provides excellent stability under harsh conditions. The remarkable anti-pathogen properties of this surface combined with its ease of implementation, substantiate its use for the prevention of surface-mediated transmission of pathogens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.