Abstract
Odorant sensitivity and discrimination in the olfactory system appear to involve extensive neural processing of the primary sensory inputs from the olfactory epithelium. To test formally the functional consequences of such processing, we implemented in an artificial chemosensing system a new analytical approach that is based directly on neural circuits of the vertebrate olfactory system. An array of fiber-optic chemosensors, constructed with response properties similar to those of olfactory sensory neurons, provide time-varying inputs to a computer simulation of the olfactory bulb (OB). The OB simulation produces spatiotemporal patterns of neuronal firing that vary with vapor type. These patterns are then recognized by a delay line neural network (DLNN). In the final output of these two processing steps, vapor identity is encoded by the spatial patterning of activity across units in the DLNN, and vapor intensity is encoded by response latency. The OB-DLNN combination thus separates identity and intensity information into two distinct codes carried by the same output units, enabling discrimination among organic vapors over a range of input signal intensities. In addition to providing a well-defined system for investigating olfactory information processing, this biologically based neuronal network performs better than standard feed-forward neural networks in discriminating vapors when small amounts of training data are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.